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Richtmyer-Meshkov instability in reactive mixtures
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This paper analyzes the effect of reactivity on the Richtmyer-Meshkov instability with

particular emphasis on the velocity and wave number scaling and on the effect of free

detonation instability modes on the interface corrugation rate. The analysis is performed

by solving numerically for the first order perturbation generated by the shock-induced

acceleration of an initially corrugated interface. The results show a profound effect of the

reactivity on both the short time growth rate and the long time linear regime.

I. Introduction

This paper analyzes the role of mixture reactivity on the dynamics of the Richtmyer-Meshkov instability
(RMI) (see Richtmyer1 for a more detailed description on the non-reactive problem). The phenomenon

is of physical importance in the context of detonation initiation and baroclinic mixing. Previous attempts
to model the RMI in reactive fluids lack a thorough examination of the mixture thermo-chemical properties
on the surface deformation rate, of the induction-disturbance scaling, and of the interaction between the
detonation global instability and the interface convective instability.

A peculiar difference between reactive and nonreactive problems is the wave number scaling. Khoklov, et

al.2, 3 analyzed the RMI resulting from flame shock interaction. They note the absence of fine scales
interface disturbances in burning computations, and conjecture that the flame consumes the small scales. The
Richtmyer shock problem has no geometrical length scale, so that, in the non-reactive case, the normalized
growth rate of an interface disturbance scales linearly with the disturbance wave number. The premixed
combustion problem that supports detonation initiation has, in its most simple form, the induction length
as associated scale. The relationship between induction and disturbance wave number introduces a scaling
parameter, Massa and Lu.4

It is widely acknowledged that non-reacting shocks are stable to linear perturbations, while detonations
are unstable for realistic values of the heat release. In the non-reactive Richtmyer-Meshkov problem, the
interface deforms with a linear rate, while the shocks relax toward the unperturbed state with an exponen-
tial decay. In the reactive case, for a time-unstable detonation, the resonant interaction between surface
deformation and detonation instability may support super-linear growth rates of interface disturbances.

Instability patterns associated with the RMI play a fundamental role in the mixing rate through the strain
driven gradient steepening at the interfaces. The contribution of the initial patterns to the instantaneous
mixing rate was measured to be up to 80% of the peak mixing rate, in non-reactive measurements Tomkins, et
al.5 On the other hand, for reactive mixtures, we expect the scaling effect to alter shock induced mixing,
and favor the process at selected wave numbers.

In this paper we present a linear stability analysis of the RMI supporting detonation initiation. This
analysis focuses on scaling of the interface growth rate with the perturbation wave number under combustion
conditions, and on the coupling between detonation front and interface instabilities. This draft documents
the method, numerical convergence of the solution, and preliminary results obtained assuming infinitely fast
kinetics.
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II. The problem

The objective of this section is to identify the dynamics of a perturbation of a planar interface between
two fluids of different density when subject to instantaneous shock acceleration. We shall do so by assuming
that the perturbation is much smaller than the base flow, and thus by linearizing the dynamic equations.
The focus of the research is on the effect of the reactivity of the mixture on perturbation growth.

Consider a planar shock incident on a interface that separates two immiscible fluids of different den-
sity Fig. 1(a). The two dimensional plane has Cartesian coordinates x and y, to which correspond unitary
vectors ~i and ~j. At time t = t0 the shock hits the interface and a reflected and a transmitted corrugated
shocks depart from the point of impact Fig. 1(b). There are three interfaces in the system, the reflected
shock labeled as (r), the transmitted shock labeled as (t), and the contact interface labeled as (I). The inter-
faces move with time/space dependent velocities, Wr(t, y), Wt(t, y) and WI(t, y) with directions indicated
in Fig. 1(b). The reflected-transmitted shock system divides the space in 4 regions labeled in Fig. 1(b) as
region(0) to the left of the transmitted shock, region(1), region(2) and region(3) to the right of the reflected
shock. Only one of the two fluids, that in region(1), is assumed to be reactive; this configuration models a
detonation initiation by shock impingement.

We seek to evaluate the time dependent solution to the problem, i.e., the pressure p, velocity vector
~u ≡ u~i+ v~j, the density ρ, and reaction progress variable λ. In a vector form we write the solution vector as

P (x, y, t) = [p, u, v, ρ, λ]T . (1)

The solution vector is expanded in the sum of a base solution (zeroth order solution) and a perturbation
(first order solution):

P (x, y, t) = P 0 (x, y, t) + P 1 (x, y, t) . (2)

Note that if there were no combustion, the zeroth order would not be a function of the spatial coordinates
or the time.

III. Governing Equations

The governing equations are the Euler equations for a reactive flow. The four regions of the space are
connected using the Rankine-Hugoniot conditions at the 3 interfaces. We shall also consider the incident
shock, labeled as (inc), when solving for the flow. The Rankine-Hugoniot equations are written in terms of
local conditions at the interface. First, for each point (P) on the interface we define a local reference system
(t,n) moving at the interface speed and aligned with it, as shown in Fig. 2. The normal and tangential
components of the velocity vector with respect to the local coordinate system (t,n) are:

un = (u−W ) cos θ + v sin θ, (3a)

ut = −u sin θ + v cos θ. (3b)

Next, for each interface we define a jump operator [·] that yields the difference between the quantity at the
right of the interface (R) minus the quantities at the left of it (L). Additionally, we introduce the assumption
of thermally and calorically perfect gases with isentropic index γ, and introduce the total enthalpy

H =
γ

γ − 1

p

ρ
−Qλ+

1

2

(

u2
n + u2

t

)

.

The Rankine-Hugoniot relations are written as:

[ρun] = 0 (4a)
[

p+ ρu2
n

]

= 0 (4b)

[ut] = 0 (4c)

[H ] = 0 (4d)

[λ] = 0. (4e)
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Figure 1. Reflected and transmitted shocks.
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Figure 2. Local conditions at any interface (shocks, or contact discontinuity.

IV. Zeroth order boundary conditions

At the zeroth order the surface corrugation is zero, and thus θ = 0. Equations (4c) and (4e) are therefore
decoupled from the rest of equation (4), and imply that the tangential velocity and the species mass fractions
are identical on both sides of the interface (hence the value of the progress variable is set to zero on both
sides). The remaining three equations can be solved for the interface velocity W , the density ρ and the
fluid velocity u on one side of the interface once the same conditions on the other side plus the pressure on
both sides are given. It is customary to solve the equations for the density ratio Xρ ≡ ρL

ρR
in terms of the

(assigned) pressure ratio Xp ≡ pL

pR
. To do so, we shall introduce a utility variable, g = γ+1

γ−1 . For the sake of

example, we assume that we want to find the solution on the left side (L) in terms of that on the right side
(R) and Xp; the opposite case is easily determined. We find:

Xρ =
1 + gXp

g + Xp
, (5a)

unL = ±
√

pR

ρR

√

Xp − 1

Xρ (Xρ − 1)
, (5b)

unR = XρunL. (5c)

In order to find the velocity in the original coordinate system (x,y)a, we eliminate the shock velocity by
writing

unR = uR −W and unL = uL −W =⇒ uL = uR + unL − unR.

aRemember we are solving for the left side given the right side.
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Therefore, the final equation is

uL = uR ±
√

pR

ρR
(Xp − 1)

√

g − 1

1 + gXp
. (6)

Both solutions (+) and (-) are mathematically possible. Physically the sign is determined by looking at the
direction toward which the shock propagates.

The Rankine-Hugoniot equations are valid also at the contact interface (I). The solution method is slightly
different, because the essence of a contact discontinuity is that the velocity on either side of the interface is
equal to the velocity of the interface, i.e., there is no fluid crossing the interface:

uL = uR = W =⇒ unL = unR = 0. (7)

Therefore, only equation (4b) of equation (4) is meaningful, and yields

pL = pR, (8)

equation (8) plus the two equations uL = W and uR = W are the only equations we shall write for the
interface. Notice that we have

ρL 6= ρR vL 6= vR and λL 6= λR.

Therefore, for a contact discontinuity, we cannot obtain the solution on one side given that on the other side
and the pressure ratio.

V. Euler Equations

The reactive Euler equations control the time evolution of the solution in regions (1) and (2), c.f., Fig. 1(b).
We start with the conservative variable formulation,

∂Q

∂t
+
∂F

∂x
+
∂G

∂y
+R1 = 0, (9)

where,

Q =

















ρ

ρu

ρv

ρ
[

1
γ−1

p
ρ −Qλ+ 1

2

(

u2 + v2
)

]

ρλ

















, F =















ρu

p+ ρu2

ρuv

ρuH

ρuλ















, G =















ρv

ρuv

p+ ρv2

ρvH

ρvλ















and R1 =















0

0

0

0

−ρω̇















, (10)

and ω̇ ≡ (1 − λ)Aω exp−Eωρ/p is the rate of destruction of mass of reactant per unit mass of mixture. It
is useful to transform the Euler equations in primitive variables, P c.f., equation (1). To do so we evaluate
a set of Jacobian matrices, QP ≡ ∂Q

∂P , A1 ≡ ∂F
∂P and B1 ≡ ∂G

∂P , write the Euler equations as

∂P

∂t
+Q−1

P A1
∂P

∂x
+Q−1

P B1
∂P

∂y
+Q−1

P R1 = 0, (11)

denote
A ≡ Q−1

P A1, B ≡ Q−1
P B1 and R ≡ Q−1

P R1,

and finally write
∂P

∂t
+A

∂P

∂x
+B

∂P

∂y
+R = 0, (12)
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where the matrices are given by,

A ≡

















u γp 0 0 0
1
ρ u 0 0 0

0 0 u 0 0

0 ρ 0 u 0

0 0 0 0 u

















;B ≡

















v 0 γp 0 0

0 v 0 0 0
1
ρ 0 v 0 0

0 0 ρ v 0

0 0 0 0 v

















R ≡















−(γ − 1)Qρω̇

0

0

0

−ω̇















. (13)

V.A. Coordinate transformation

A coordinate transformation is necessary to map the time dependent solution domain in a stationary one.
We concentrate on regions (1) and (2). We transform the domain between the two moving shocks into a
stationary domain between two flat shocks. The mapping is illustrated in Fig. 3. Consider a region, either (1)

R
eg

io
n 

2

R
eg

io
n 

1

Figure 3. Schematic of the mapping.

or (2), and assume that the coordinate of the two interfaces that delimit it are given as x1(y, t) and x2(y, t)
for the left and right interfaces, respectively. We define a new coordinate system (τ, ξ and η) related to
(t, x and y) by

x = x1 +
x2 − x1

2
(ξ + 1) , ξ ∈ [−1, 1], (14a)

y = η, η ∈ [−∞,∞], (14b)

t = τ, τ ∈ [0,∞]. (14c)

For the sake of a short hand notation, we define three auxiliary variables,

β1 = −ξ − 1

2
, β2 = 1 − β1 and δ =

2
∑

j=1

dβj

dξ
xj . (15)
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As customary in coordinate transformations, the next step is to determine derivatives with respect to
(t, x and y) in terms of derivatives with respect to (τ, ξ and η). For any variable ψ (t, x, y), we find

∂ψ

∂x
=
∂ψ

∂ξ
/δ (16a)

∂ψ

∂t
=
∂ψ

∂τ
−





2
∑

j=1

βj
∂xj

∂t





∂ψ

∂ξ
/δ (16b)

∂ψ

∂y
=
∂ψ

∂η
−





2
∑

j=1

βj
∂xj

∂y





∂ψ

∂ξ
/δ. (16c)

V.B. Linearized equations

Substitution of the mapping relations, equation (16), into the Euler equation, equation (12), yields a set of
non-linear equations. Using equation equation (2) for the primitive variables, and collecting term of equal
perturbation order yields two linear equations, one for the zeroth order, P 0, and one for the first order
perturbation, P 1. In the non-reactive case, the zeroth order equation reduces to P 0 = const over both
regions (1) and (2). In the reactive case, the equation is non-linear and given by

∂P 0

∂τ
+





A0

δ0
−

2
∑

j=1

βj

δ0
W 0

j I





∂P 0

∂ξ
+R

(

P 0
)

= 0. (17)

Before discussing the first order equation, we adopt a nomenclature similar to Richtmyer’s1 equations
6-8, and set,

xj = W 0
j t+ aj(t, y). (18)

The time derivatives of the corrugation terms with respect to the time ȧj will be identified as deformation
rates, i.e., ȧI is the interface deformation rate. Thus, we obtain the following expansions,

δ0 =





2
∑

j=1

dβj

dξ
W 0

j



 t, δ1 =

2
∑

j=1

dβj

dξ
aj(t, y). (19)

In the linearized analysis we assume (for both reactive and non-reactive fluids) the y ≡ η direction to be
homogeneous, thus the zeroth order solution does not depend on η. Derivatives of the first order perturbation
with respect to η are determined by multiplying the value of the function by the term ik, where i is the
imaginary unit and k is the wave number of the perturbation, i.e.,

∂ψ

∂η
= ikψ.

The first order perturbation equation becomes after some manipulation,

∂P 1

∂τ
+
δ1

δ0

(

∂P 0

∂τ
+R

(

P 0
)

)

−





2
∑

j=1

βj

δ0
ȧj





∂P 0

∂ξ
− ik





2
∑

j=1

βj

δ0
aj



B0 ∂P
0

∂ξ

+





A0

δ0
−

2
∑

j=1

βj

δ0
W 0

j I





∂P 1

∂ξ
+ ikB0P 1 +

∂R

∂P
P 1 +

A1 ∂P 0

∂ξ

δ0
= 0,

(20)

where I is the identity matrix.
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V.C. Initial Conditions

The initial conditions are given at t = 0, δ0 = 0. The zeroth order solution is taken piecewise constant
in regions (1) and (2). The shock and contact discontinuity jump conditions yield the values for the flow
variables. The time derivatives at the initial time is evaluated by taking the limit for t→ 0+ of equation (17).
By using the l’Hôpital’s rule the initial derivative Ṗ is found by solving

∂Ṗ

∂τ
+
A0 −

∑2
j=1 βjW

0
j I

(

∑2
j=1

dβj

dξ W
0
j

)

∂Ṗ

∂ξ
+R

(

P 0
)

= 0. (21)

where P 0, W 0 and A0 are evaluated at the initial time. Equation (21) together with boundary conditions
on Ṗ resulting from differentiating the shock jump conditions, are solved using the same discretization as
for the time dependent problem. Note:

∂P 0

∂x
= lim

t→0+

∂P 0

∂ξ
/δ0 6= 0

leads to limt→0+
∂Ṗ
∂ξ 6= 0, as a consequence of the boundary conditions, which implies that

lim
t→0+

(

∂P 0

∂τ
+R

(

P 0
)

)

6= 0. (22)

The initial values of the interface perturbations, aj , j = 1 . . . , 3, are determined by the initial instanta-
neous acceleration imparted by the shock to the interfaces. These perturbations are normalized by the value
at the the contact discontinuity, j = 2, therefore,

aj =
1 −Wj/Winc

1 −W2/Winc
. (23)

The initial conditions in equation (23) are not different from those reported by Richtmyer.1 The conclusion
that the initial compression of the interface is not affected by the reactivity is rooted in the fact that the
initial perturbation is assumed much smaller than any characteristic reaction length, say the half reaction
distance. The non-reactive RMI analysis is valid for ǫk ≪ 1, where k is the interface disturbance wave
number. The present analysis requires also Daǫk ≪ 1.

The remaining conditions for the first order perturbation are determined by taking the limit of equation
equation (20) for t → 0+, which corresponds with sending δ0 → 0. The limit together with the boundary
conditions yield a set of ordinary differential equations in ξ, which are solved using the same discretization as

for the time dependent problem. Note that the previous result in equation (22) leads to limt→0+
∂P 1

∂ξ 6= 0, and
a non-zero initial perturbation. Physically the non-zero initial perturbation is explained by considering the
passage of the incident shock through the initial perturbation. Fluid particles with different y intersect the

interface at different times, leading to equation (23). When limt→0+
∂P 0

∂ξ /δ
0 6= 0, i.e., for reactive conditions,

this yields an initial perturbation with constant but non-zero first derivative. Shock induced acceleration
deposit an initial vorticity that is dependent on the spatial derivative of the post-shock field, and thus on
the Damkhöler number. As a consequence, the initial surface deformation rates

lim
t→0+

ȧj 6= 0, j = 1, . . . , 3.

For the non-reactive case, only v1 is non-zero at t = 0. In the reactive counterpart ∂v0

∂x = 0, so the initial
distribution of v1 is identical to the non-reactive analog.

The time derivative of the perturbation at t = 0 is found by applying the l’Hôpital’s rule to the limit of
equation (20) for t→ 0+. The resulting ordinary differential equation is similar in structure to equation (21),
and requires boundary conditions for the time derivative of the first order perturbation, which are obtained
by time differentiating the perturbation of the shock jump conditions.
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V.D. Scales and parameters

The pressure, density and temperature scales are the corresponding variables in region(0) of Fig. 1(b). The
velocity scale is the square root of the ratio between reference pressure and density. The length scale is the
inverse of the wave number k of the transversal (to the shock) disturbance. The time scale is the residence
time based on the reference velocity and length.

The transition of a shock from a non-reactive to a reactive mixture will be considered in this research.
The reactive mixture is in region(1) while the non-reactive gas is in region(2) of Fig. 1(b). The solution
to the non-dimensional problem depends on a number of non-dimensional parameters calculated under the
assumption of a steady detonation in region(1). The first four are the non-dimensional activation energy
E, heat release Q, isentropic index, gamma, and overdrive f , defined as in Erpenbeck.6 The isentropic
index is kept constant and equal to 1.2 in all results presented in the present paper. The fifth is the
Damkhöler number. Note that if reaction half distance were selected as length scale, this last parameter
would be replaced by the product of perturbation wave number k and reaction half distance, L1/2. The
choice of the wave number as length parameter is due to the fact that the Richtmyer instability is dominant
over the detonation intrinsic instability, and the transversal wave length is the only scale of the non-reactive
problem. The sixth parameter is the initial density ratio taken across the stationary interface,Fig. 1(a),
between region(A) and region(0). This parameter is labeled R∗.

The six non-dimensional parameters lead to the determination of all other non-dimensional variables that
describe the system. An important variable is the Mach number of the incident wave depicted in Fig. 1(a),
Minc. A lower bound for this value can be determined by taking f = 1, R∗ ⇒ 0 and varying the heat release.
Such solution is plotted together with the value corresponding to R∗ = 1/2 in Fig. 4. The plot demonstrates
the large incident Mach numbers necessary to obtain a steady detonation structure in region (2).

0 10 20 30 40 50
1

1.5

2

2.5

3

3.5

Q

M
in

c

Figure 4. Incident Mach number versus heat release parameter for two density ratios: R∗

⇒ 0 solid line, and R∗ = 1/2
dashed line.

The parameters will be varied to study their effect on the instability. The value of the overdrive will
be kept constant and equal to 1.2. The value of the heat release and the activation energy will be changed
at the same rate to simulate the effect of changing the unreacted stream temperature. Physical variations
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of region(0) temperature correspond to either pre-heating of the mixture or the passage of multiple shocks
across the interface. Therefore, we set, for simplicity, E = Q. A characteristic value of E = Q is the
threshold for longitudinal instability. This value is significant to this study because below this threshold the
long-time base flow solution will approach a traveling wave in region(0), while above this value a pulsating
solution is obtained. The threshold point for γ = f = 1.2 is equal to 18.39 and the growth rate is shown in
Fig. 5. Note that in Fig. 5 the absence of a transversal perturbation requires that the half reaction distance
is used as length scale.
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Figure 5. Growth rate of longitudinal perturbations. The positive growth rate indicates unstable waves.

As previously mentioned, the Damkhöler number represents a relationship between reaction and pertur-
bation lengths. In this research the mixture properties have been kept constant while the temperature in
region(0) and the perturbation wave number are varied. The temperature is assigned by means of the ratio
φT ≡ E/25, which means that Eref = 25 is used as reference (i.e., nominal) non-dimensional activation en-
ergy, and obviously Qref = Eref . The perturbation wave number is given by the product φK ≡ kL1/2,φT =1,
which implies that the inverse of the half reaction length at E = 25 is used as reference wave number. The
Damkhöler number is then defined as

Da =

∫ 1/2

0

u exp
“

−
ρEref

p

”

1−λ dλ
√
φTφK

, (24)

where u, p and ρ are the customary functions of λ, Qref and f :

M0 =

√

√

√

√

f
(

γ2Qref +
√

(γ2 − 1)Qref ((γ2 − 1)Qref + 2γ) + γ −Qref

)

γ
(25a)

p =

√

γ
(

γ (M2
0 − 1)

2 − 2 (γ2 − 1)λM2
0Qref

)

+ γM2
0 + 1

γ + 1
(25b)
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u =
γM2

0 − p+ 1√
γM0

(25c)

ρ =

√
γM0

u
(25d)

In summary three parameters will be varied in the present research. They are φT , φK and R∗, while the
isentropic index and the overdrive are fixed at 1.2, and the non dimensional heat release is taken equal to
the non-dimensional activation energy. Note that the reference value Qref = 25 yields an adiabatic flame
temperature of Tad = 1550K in standard conditions. Different cases will be denoted by defining the values
of R∗, φK (or the Damkhöler number itself) and E, as this yields a more compact notation.

V.E. Discretization

Equations (17) and (20) are discretized in the x direction using the Chebyshev tau method, Dongarra, et

al.7 Denoting by N the order of the maximum Chebyshev polynomial resolved in the truncation error, and
Ck (x) the Chebyshev polynomial of the kth order, the expansion takes the form:

zj =

N+1
∑

k=0

ẑj,kCk (ξ) , (26)

where ẑj,k is the array of Chebyshev components. The time integration is carried out using a variable step
stiff ODE solver, with maximum absolute tolerance set to 1× 10−7. A second order A-stable time integrator
has been used to advance the solution in time. It was determined that A-stability is a necessary property to
accurately resolve the dynamics of time-unstable detonations.

The solution domain is decomposed in two regions, marked as (1) and (2) in Fig. 1(b). In each region 175
Chebyshev polynomials are used to represent the solution. Numerical convergence of the Chebyshev expan-
sion is monitored in three ways: i) for longitudinally stable detonations, the detonation Mach number of the
zeroth order solution approaches at large times the ZND value, the maximum relative error in detonation
Mach number for E = Q < 18.39 is 1.35 × 10−4; ii) the growth rate of the surface deformation a1 matches
for large time the values given by the linear analysis on 1D detonations. This point will be discussed in
more detail in the following; iii) a grid convergence study was conducted on the numerical solution. The
solutions converging at the slowest rate were determined to be those at highest activation energy and highest
Damkhöler number, low φK . The absolute convergence error for E = Q = 25 and φK = 0.1 is shown in
Fig. 6. Note that large error for large times are due to the instability growth. The error suddenly increases
around t = 1.2 because of the formation of a shock in the reactive mixture. Finally, the maximum relative
error between the N = 200 and the N = 175 is equal to 0.027.

VI. Results

For each value of the scaled activation energy, i.e., φT , two isentropic solutions, denoted as frozen and
equilibrium cases will be considered together with the finite Damkhöler number ones. The frozen solution
corresponds to setting λ = 0 in equation (10), while the equilibrium solution corresponds to λ = 1. It
would be desirable to identify the two isentropic cases with limits in the Damkhöler number. Our analysis
shows that the frozen solution corresponds to the limit Da → 0 for the reactive RMI problem, while the
equilibrium solution does not correspond to the Da → ∞ limit. The rationale is that as Da increases at

constant activation energy and heat release, the term limt→0+

(

∂P 0

∂τ +R
(

P 0
)

)

increases in a proportional

manner, leading for Da→ ∞ to an infinitely large initial perturbation. For Da≫ 1 and δ0 ≪ 1 the second
term in equation (20) becomes the dominant contribution to the perturbation growth. Physically such term
corresponds to the contribution to the perturbation dynamics of the spatial derivative of the solution at
t = 0, and the y variation of the impact time between the incident shock and the contact discontinuity.
In fact, according to equation (19), δ1 is proportional to the difference in surface deformation between the
transmitted shock and the contact discontinuity, while, according to equation (23), the initial difference in
deformation is proportional the ratio in velocity between incident and transmitted shock.
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Figure 6. Convergence error for E = Q = 25 and φK = 0.1 and two values of the Chebyshev expansion order N .

The magnitude of the initial perturbation scales linearly with the Damkhöler number, being the reaction
length the only length scale of the 0th order perturbation. It also increases with heat release and decreases
with the non-dimensional activation energy. In Fig. 7 we show the effect of the activation energy on the
surface deformation rate, limt→0+ ȧ2, for two Q values, Da = 1, and with the remaining parameters set as
described in §V.D.

The influence of E and φK on the deformation growth rate of the contact discontinuity is shown in Fig. 8.
The end time of the simulations is set to 15. Cases for which a free detonation is unstable were stopped
for t < 15 when the deformation of the transmitted shock, a1 reached the value of 1000. Considering
the two isentropic solutions, the reactivity acts to increase the deformation rate because, given identical
incident conditions, the transmitted shock travels faster than the non-reactive analog, i.e., the shock induced
acceleration is stronger. The initial v1 jump across the interface is larger in the reactive case. For the finite
Damkhöler number cases the acceleration of the shock takes place over a finite time interval. For medium
Damkhöler numbers the reactive solutions support a larger deformation rate than the non reactive analogs.
This is especially evident in the linear growth phase, i.e., at large times t → ∞. A decrease in activation
energy accentuates the decrease in linear growth rate at large Damkhöler numbers. For small times, large
Damkhöler solutions support a large growth rate. This phenomenon is linked to the increase in initial rate
previously described in conjunction with Fig. 7. The small time variation of ȧ2 versus t is shown in Fig. 9
for four values of φk and E = Q = 10.

The detonation instability manifest itself by altering the linear regime at large t. Below the longitudinal
instability limit, E < 18.39, for low value of φk a free detonation is stable. The instability boundary φk

versus E is shown in Fig. 10.
The effect of detonation instability on the contact-surface deformation a2 is enhanced at high activa-

tion energies and low wave numbers, φk (i.e., high Damkhöler numbers). The reason for the deforma-
tion/activation energy correlation is the higher instability growth rate at higher energies. Note that in our
analysis when changing the activation energy the time scale changes, because the mixture is maintained fixed.
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Figure 7. Initial deformation rate versus E for two values of Q and three values of R∗, f = 1.2, γ = 1.2, Da = 1. Note,
logarithmic y scale. Solid lines Q = 30, dashed lines Q = 15. Thin lines R∗ = 2/3, medium lines R∗ = 1/2 and thick lines
R∗ = 1/3.

So the above mentioned relationship must be intended as equivalent to saying that the growth rate increases
with respect to the time scale that controls the non-reactive RMI. The reason for the deformation/wave
number trend is the finite time necessary for the instability development.

The transmitted shock deformation a1 is significantly more pronounced at large time than the contact
discontinuity. The exponential increase proper of unstable free detonations is recovered at large times. The
deformation rate of the transmitted shock is compared to the free detonation highest normal mode eigenvalue
(complex), ᾱ, by minimizing the L2 norm,

‖a1 − C3 exp (C1τ) sin (C2τ + C4)‖ , τ ∈ [t, t− 2π/ℑ (ᾱ)],

in the vector Ci. The estimated growth rate is α(t) = C1. The ratio α(t)/ℜ (ᾱ) is plotted versus time
in Figs. 11 and 12 for four values of the activation energy and φk. For the eight cases shown in Figs. 11
and 12 ᾱ is given in table (1). We thus summarize the results of the growth rate analysis by noticing that
stronger contact interface deformation correlate with stronger transmitted shock deformation and are caused
by an increased free detonation instability. For detonations with a low ᾱ the transmitted shock interface
still exhibits an exponential growth rate, but the contact interface manifest the linear growth at large time
proper of the RMI.

To characterize the effect of velocity on the large time contact interface growth rate we focus on the
smallest wave number analyzed, φk = 0.1, and determine the least squares fit to a2(t) for t > 5 for different
activation energies. The slope of this fit is scaled by the asymptotic value limt→∞ ȧ2 for the inviscid RMI,
and shown in Fig. 13. The results imply that the late stage slope increases with the activation energy. The
rationale is a decreasing value of the perturbation velocity u1 in the reactive region following the explosion.
For small values of the activation energy the terminal slope is lower than the non-reactive analog.

Finally the effect of a change in the density ration R∗ for small wave numbers is illustrated in Fig. 14.
An increase in density ratio increases the early stage contact-surface deformation and decreases the late
stage deformation rate. The results in Fig. 14 are in agreement with those in Fig. 7, where the initial
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Figure 8. Interface deformation versus time for four values of E. The two thick lines represent the isentropic cases:
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E ᾱ ᾱ

25 1.6557 @ φk = 0.25 1.1145 @ φk = 0.5

20 1.2415 @ φk = 0.25 1.0425 @ φk = 0.5

15 0.57493 @ φk = 0.5 0.61259 @ φk = 1

10 0.045019 @ φk = 1 0.233 @ φk = 1.5

Table 1. Growth rates for free propagating detonations.
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Figure 10. Stability boundary for a free detonation with γ = f = 1.2.
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Figure 11. Scaled growth rate versus time, a different set of wave numbers.
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Figure 12. Scaled growth rate versus time.
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Figure 13. Late stage slope (i.e., best fit of a2(t) for t > 5) versus activation energy.
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deformation rate was shown to increase with R∗. The negative correlation between linear (late stage) and
initial growth rate confirms our previous results, thus allowing us to extend our conclusions to density ratios
in a neighborhood of R∗ = 1/2.
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Figure 14. Interface deformation versus time for φk = 0.1, E = 10 and three values of R∗.

VII. Conclusion

In this paper we analyze the instability generated by an incident shock traveling from a light non-reactive
fluid into a heavy reactive one. The Richtmyer-Meshkov instability (RMI) for reactive mixture presents two
specific features that explain the parametric influence of the reactivity, i.e., Damkhöler number. The first is
associated with the initial acceleration of the interfaces over a spatially varying field, and induces a strong
variation of the contact interface deformation with the wave number for short times. The long time linear
growth rate correlates negatively with the initial growth rate.

The second is associated with the correlation between free detonation instability and RMI. Exponential
growth of the interface is observed only for highly unstable detonations, while the linear growth due to the
RMI dominates for low activation energy and heat release. The transmitted shock manifest an exponential
growth very similar to that of free detonations.
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